Installationsprüfgerät MI 3152 EurotestXC

MI 3152 EurotestXC ist ein Installations-Prüfgerät der neuen Generation von Metrel's multifunktionalen Messgeräten. Die bereits bekannten Funktionen, wie Prüfung der kompletten Elektrointsallation, Sicherheitsprüfung nach IEC / EN 61557 und AUTO SEQUENZ Prüfung von TN, TT und IT Erdungssystemen werden durch eine komplett neue Benutzeroberfläche auf Basis eines großen FarbTouchscreen-Displays gesteuert. Es bietet eine breite Palette von Funktionen angefangen von der Online-Spannungsüberwachung, Drehfeldprüfung, Erdungswiderstandsmessung, TRMS Strommessung, RCD-Prüfungen, Leitungs- und Schleifenimpedanz Messungen, Erdungswiderstandsmessungen, ISFL-Messungen bis hin zu IMD-Prüfungen.

MESSFUNKTIONEN

- Isolationswiderstand mit Gleichspannung von 50 V bis 1000 V;
- **Durchgang von PE**-Leitern mit Polaritätsänderung, Prüfstrom 200 mA;
- Durchgang von PE-Leitern mit Prüfstrom von 7 mA (fortlaufende Messung) ohne RCD-Auslösen;
- Leitungsimpedanz / Schleifenimpedanz;
- · Schleifenimpedanz ohne RCD Auslösung;
- Spannung (Effektivwert) und Frequenz;
- · Phasenfolge;
- · Leistung und Oberschwingungen;
- RCD-Prüfung (allgemein und selektiv, Typen AC, A, F, B, B+);
- Erdungswiderstand (Dreileitermethode, Zweizangenmethode);
- Spezifischer Erdungswiderstand mit Ro-Adapter (optional):
- Effektivwert Leck- und Lastströme; (optional);
- Erstfehler-Ableitstroms (ISFL);
- Prüfung der Isolationswächter (IMD);
- Beleuchtungsstärke (optional).
- Hohe Auflösung der Schleifenimpedanz (m Ω).

HAUPTMERKMALE

- Vordefinierte Mini- AUTO SEQUENCE°s:
 Auto TT (U, ZIn, Zs, Uc);
 Auto TN/RCD (U, ZIn, Zs, Rpe);
 Auto TN (U, ZIn, ZIpe, Rpe);
 Auto IT (U, ZIn, Isc, Isfl, IMD).
- Integrierte Hilfe-Bildschirme: für eine Unterstützung vor Ort.
- Integrierte Sicherungskennlinien: für eine automatische Bewertung der Leitungs- / Schleifenimpedanzergebnisse.
- Online Überwachung aller
 3 Spannungen: in Echtzeit.
- Automatische Polaritätsumkehr bei Durchgangsprüfung.
- · Automatisches RCD-Prüfverfahren.
- **Eingebautes Ladegerät** und Akkus als Standardzubehör.
- Bluetooth-Kommunikation zwischen PC ober, Androidendgeräten über integriertes Bluetooth-Modul.
- PC Software: Metrel ES Manager für die Erstellung von Teststrukturen, Hoch-/Herunterladen von Testergebnissen und zur Berichtserstellung (inkl.).
- EuroLink Android APP: Datenverwaltungstool (optional).

ANWENDUNGEN

- Erst- und Wiederholungsprüfungen an häuslichen und industriellen Elektroinstallationen.
- Prüfungen an Hoch- und Niederfrequenzanlagen z.B. Tests in Industrienetzen usw.
- Prüfen von Einphasen- und Mehrphasensystemen.
- Prüfen von TT-, TN- und IT-Erdungssystemen.
- Großserienprüfung (Industrie, Luftfahrt, Eisenbahn, Bergbau, Chemie, Schifffahrt)
- Prüfen von medizinischen Anlagen.

STANDARDS

Funktionalität:

• IEC/EN 61557

Sonstige Bezugsnormen für Prüfungen:

- VDE 0100-600
- VDE 0105-100
- VDE 0100-410 (HD 60364-4-41);
- VDE 0664 (EN 61008);
- VDE 0664 (EN 61009);
- BS 7671;
- AS/NZ 3017.

Elektromagnetische Verträglichkeit:

• IEC/EN 61326-1;

Sicherheit:

- IEC/EN 61010-1;
- IEC/EN 61010-031
- IEC/EN 61010-030IEC/EN 61010-032

TECHNISCHE DATEN

		Messbereich	Auflösung	Genauigkeit
DURCHGANG	Prüfstrom 7 mA Zweileit- ermethode	0.00 Ω 19,99 Ω 20.0 Ω 1999 Ω	0,1 Ω 1 Ω	±(5 % des Abl. + 3 Digits)
	Prüfstrom 200 mA	0,00 Ω 19,99 Ω	0,01 Ω	±(3 % des Abl. + 3 Digits)
	Zweileitermethode	20.0 Ω 199,9 Ω	0,01Ω	±(5 % des Abl.)
	Zwenerenneenoue	200.0 Ω 1999 Ω	1Ω	±(5 % des Abl.)
ISOLATON-	Prüfspannung	0,00 ΜΩ 19,99 ΜΩ	0,01 ΜΩ	±(5 % des Abl. + 3 Digits)
SWIDER-	50/100/250 V	20,0 ΜΩ 99,9 ΜΩ		±(10 % des Abl.)
STAND		100,0 MΩ 199,9 MΩ	0,1 ΜΩ	±(20 % des Abl.)
	Prüfspannung	0,00 ΜΩ 19,99 ΜΩ	0,01 Ω	±(5 % des Abl. + 3 Digits)
	50/500/1000 V	20,0 ΜΩ 199,9 ΜΩ	0,1 ΜΩ	±(5 % des Abl.)
	DCD II	200 ΜΩ 999 ΜΩ	1ΜΩ	±(10 % des Abl.)
RCD	RCD Uc	0,00 V 19,99 V	0,1 V	(-0%/±15 %) des Abl. ±
		20,0 V 99,9 V		10 Digits
	RCD (t),	0,00 ms 40,0 ms	0,1 ms	(-0%/±15 %) des Abl. ±1 ms
	RCD (t),	0,00 V max. time	0,11115	±3 ms
	RCD I Rampe	0,2xIΔN 1,1xIΔN (AC)	0,05xIΔN	±0,1xIΔN
	res i rampe	0,2xIΔN 1,5xIΔN (A),	0,03/12/14	20,1/1214
		IΔN ≥30 mA)		
		0,2xIΔN 2,2xIΔN (A),		
		IΔN <30 mA)		
		0,2xIΔN 2,2xIΔN (B)		
MPEDANZ	Zline L-L, L-N lpsc	0,00 Ω 9,99 Ω	0,01 Ω	±(5 % des Abl. + 5 Digits)
		10,0 Ω 99,9 Ω	0,1 Ω	/r= at 1 at 1
		100 Ω 999 Ω	1Ω	±(10 % des Abl.)
	71	1,00 kΩ 9,99 Ω	10 Ω	/E 0/ Al. = =: /
	Zloop L-PE, Ipfc	0,00 Ω 9,99 Ω	0,01 Ω	±(5 % des Abl. + 5 Digits
		10,0 Ω 99,9 Ω	0,1 Ω	. (40.0) ALL
		100 Ω 999 Ω	1Ω	±(10 % des Abl.)
DANINILINIC	TDMC	1,00 kΩ 9,99 Ω	10 Ω	1/2 0/ dos Abl . 2 Digits
SPANNUNG	TRMS	0 550 V	1 V 0,01 Hz	±(2 % des Abl. + 2 Digits
	Frequenz	0,00 Hz 9,99 Hz 10,0 Hz 499,9 Hz	0,01 Hz 0,1 Hz	±(0,2 % des Abl. + 1 Digits
STROM	TRMS, AC mit A 1018	0,0 mA 99,9 mA	0,1 mA	±(5 % des Abl. + 5 Digits)
TRUM	TRIVIS, ACTITICA 1018	100 mA 999 mA	1 mA	±(3 % des Abl.) + 3 Digits)
		1,00 A 19,99 A	0,01 A	±(3 % des Abl.)
	TRMS, AC mit A 1019	0,0 mA 99,9 mA	0,1 mA	indikativ
	11013, 710 1110 77 1013	100 mA 999 mA	1 mA	±(5 % des Abl.)
		1,00 A 19,99 A	0,01 A	±(3 % des Abl.)
	TRMS, AC/DC mit A 1391,	0,00 A 1,99 A	0,01 A	±(3 % des Abl. + 3 Digits)
	Bereich = 40 A	2,00 A 19,99 A	0,01 A	±(3 % des Abl.)
		20,0 A 39,9 A	0,1 A	±(3 % des Abl.)
	TRMS, AC/DC mit A 1391,	0,00 A 19,99 A	0,01 A	indikativ
	Bereich = 300 A	20,0 A 39,9 A	0,1 A	±(3 % des Abl. + 5 Digits)
		40,0 A 299,9 A	0,1 A	(======================================
	Dreileitermethode	0,00 Ω 19,99 Ω	0,01Ω	±(5 % des Abl. + 5 Digits)
		20,0 Ω 199,9 Ω	0,1 Ω	
		200,0 Ω 9999 Ω	1Ω	./10.0/ ALL 10.D:-!\
	2 Stromzangen	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω	1 Ω 0,01 Ω	±(10 % des Abl. + 10 Digits)
		200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω	1 Ω 0,01 Ω 0,1 Ω	±(20 % des Abl.)
	2 Stromzangen	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω	±(20 % des Abl.) ±(30 % des Abl.)
	2 Stromzangen Spezifischer Erdungswid-	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω
	2 Stromzangen	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm	1Ω 0,01Ω 0,1Ω 0,1Ω 0,1Ωm 1Ωm	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ
	2 Stromzangen Spezifischer Erdungswid-	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ω m 99,9 Ω m 100 Ω m 999 κΩ m 1,00 κΩ m 9,99 κΩ m	1Ω 0,01Ω 0,1Ω 0,1Ω 0,1Ωm 1Ωm 0,01kΩm	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2
	2 Stromzangen Spezifischer Erdungswid-	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm	1Ω 0,01Ω 0,1Ω 0,1Ω 0,1Ωm 1Ωm	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ
WIDERSTAND	2 Stromzangen Spezifischer Erdungswid-	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 10,0 kΩm 99,9 kΩm 100 kΩm 99,9 kΩm	1Ω 0,01Ω 0,1Ω 0,1Ω 0,1Ωm 1Ωm 0,01kΩm	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ
WIDERSTAND ERSTFE-	2 Stromzangen Spezifischer Erdungswid-	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 10,0 kΩm 9,99 kΩm	1Ω 0,01Ω 0,1Ω 0,1Ω 0,1Ωm 1Ωm 0,01kΩm	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re
WIDERSTAND ERSTFE- HLER-ABLEIT-	2 Stromzangen Spezifischer Erdungswid-	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 10,0 kΩm 99,9 kΩm 100 kΩm 99,9 kΩm	1Ω 0,01Ω 0,1Ω 0,1Ω 0,1Ωm 1Ωm 0,01kΩm 0,1kΩm	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ
WIDERSTAND ERSTFE- HLER-ABLEIT- STROM	2 Stromzangen Spezifischer Erdungswiderstand	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 10,0 kΩm 9,9 kΩm 100 kΩm 9999 kΩm	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits)
WIDERSTAND ERSTFE- HLER-ABLEIT- STROM MD	2 Stromzangen Spezifischer Erdungswiderstand	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 10,0 kΩm 99,9 kΩm 100 kΩm 99,9 kΩm	1Ω 0,01Ω 0,1Ω 0,1Ω 0,1Ωm 1Ωm 0,01kΩm 0,1kΩm	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits)
MIDERSTAND ERSTFE- HLER-ABLEIT- STOM MD PRÜFUNG	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 10,0 kΩm 9,99 kΩm 10,0 kΩm 99,99 kΩm 10,0 kΩm 99,99 kΩm 0,0 mA 19,9 mA	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte
ERSTFE- HLER-ABLEIT- STROM MD BELEUCH-	2 Stromzangen Spezifischer Erdungswiderstand	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 39,9 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 10,0 kΩm 9,99 kΩm 100 kΩm 9999 kΩm 0,0 mA 19,9 mA	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG SELEUCH- TUNGS	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 39,9 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 10,0 kΩm 99,9 kΩm 100 kΩm 9999 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 199,9 lux	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA 5 kΩ 0,01 lux 0,1 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG SELEUCH- TUNGS	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 10,0 kΩm 99,9 kΩm 10,0 kΩm 99,9 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 199,9 lux 20,0 lux 199,9 lux	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA 5 kΩ 0,01 lux 0,1 lux 1 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG SELEUCH- TUNGS	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands Typ B	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 99,9 Ωm 10,0 kΩm 9,99 kΩm 10,0 kΩm 99,9 kΩm 10,0 kΩm 99,9 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 199,9 lux 2,00 lux 199,9 lux 2,00 lux 199,9 kΩm	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 kΩm 0,1 mA 5 kΩ 0,01 lux 0,1 lux 1 lux 10 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits) ±(5 % des Abl.)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG BELEUCH- FUNGS	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 39,9 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 100 kΩm 99,9 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 199,9 lux 2,00 lux 199,9 lux 2,00 lux 199,9 lux 2,00 lux 19,99 lux 0,01 lux 19,99 lux	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA 5 kΩ 0,01 lux 0,1 lux 1 lux 10 lux 0,01 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits) ±(5 % des Abl.)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG BELEUCH- FUNGS	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands Typ B	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 39,9 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 100 kΩm 99,9 kΩm 100 kΩm 9999 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 1999 lux 2,00 lux 1999 lux 2,00 lux 19,99 klux 0,01 lux 19,99 lux 2,00 lux 19,99 lux	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ω 1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 lux 1 lux 1 lux 0,01 lux 0,1 lux 0,1 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits) ±(5 % des Abl.)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG SELEUCH- TUNGS	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands Typ B	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 39,9 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 99,9 Ωm 10,0 kΩm 9,99 kΩm 10,0 kΩm 99,9 kΩm 10,0 kΩm 99,99 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 199,9 lux 2,00 lux 199,9 lux 2,00 lux 19,99 lux 2,01 lux 19,99 lux 2,00 lux 19,99 lux 2,00 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 kΩm 5 kΩ 0,01 lux 1 lux 10 lux 0,1 lux 0,1 lux 1 lux 11 lux 11 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits) ±(5 % des Abl.)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG BELEUCH- TUNGS STÄRKE	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands Typ B	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 30,0 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 10,0 kΩm 99,9 kΩm 10,0 kΩm 99,9 kΩm 100 kΩm 9999 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 199,9 lux 20,0 lux 199,9 lux 20,0 lux 199,9 lux 20,0 lux 199,9 lux 20,0 lux 19,99 klux 20,0 lux 19,99 klux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 199,9 lux 20,0 lux 199,9 lux	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA 5 kΩ 0,01 lux 0,1 lux 1 lux 10 lux 0,1 lux 10 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits) ±(5 % des Abl.) ±(10 % des Abl.)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG BELEUCH- TUNGS STÄRKE	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands Typ B Typ C Stromversorgung	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 39,9 Ω 30,1 Ω 39,9 Ω 0,0 Ω 99,9 Ωm 100 Ωm 99,9 Ωm 100 κΩm 999 κΩm 100 κΩm 99,9 κΩm 100 κΩm 9999 κΩm 0,0 mA 19,9 mA 5 640 κΩ 0,01 lux 19,99 lux 20,0 lux 199,9 lux 20,0 lux 199,9 lux 20,0 lux 199,9 lux 20,0 lux 1999 lux 20,0 lux 19,99 klux 0,01 lux 19,99 lux 20,0 lux 19,99 lux	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA 5 kΩ 0,01 lux 0,1 lux 1 lux 10 lux 0,1 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits) ±(5 % des Abl.) ±(10 % des Abl.)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG BELEUCH- UNGS STÄRKE	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands Typ B Typ C Stromversorgung Überspannungskategorie	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 39,9 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 99,9 kΩm 100 kΩm 99,9 kΩm 100 kΩm 9999 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 1999 lux 2,00 lux 1999 lux 2,00 lux 1999 lux 2,00 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 2,00 lux 19,99 lux 2,00 lux 19,99 lux 2,00 lux 19,99 lux 3,00 lux 19,99 lux 4,00 lux 19,99 lux 5,00 lux 19,99 lux 6,00 V CAT III; 300 V CAT III	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA 5 kΩ 0,01 lux 0,1 lux 1 lux 10 lux 0,1 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits) ±(5 % des Abl.) ±(10 % des Abl.)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG BELEUCH- TUNGS STÄRKE	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands Typ B Typ C Stromversorgung Überspannungskategorie Schutzart	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 39,9 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 9,99 kΩm 100 kΩm 99,9 kΩm 100 kΩm 9999 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 199,9 lux 20,0 lux 199,9 lux 2,00 lux 19,99 lux 2,00 lux 19,99 lux 2,00 lux 19,99 klux 0,01 lux 19,99 lux 2,00 lux 19,99 lux	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA 5 kΩ 0,01 lux 0,1 lux 1 lux 10 lux 0,1 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits) ±(5 % des Abl.) ±(10 % des Abl.)
ERSTFE- HLER-ABLEIT- STROM MD PRÜFUNG BELEUCH- TUNGS STÄRKE	2 Stromzangen Spezifischer Erdungswiderstand Indikative Schwelle des Isolierwiderstands Typ B Typ C Stromversorgung Überspannungskategorie	200,0 Ω 9999 Ω 0,00 Ω 19,99 Ω 20,0 Ω 39,9 Ω 30,1 Ω 39,9 Ω 0,0 Ωm 99,9 Ωm 100 Ωm 999 Ωm 1,00 kΩm 99,9 kΩm 100 kΩm 99,9 kΩm 100 kΩm 9999 kΩm 0,0 mA 19,9 mA 5 640 kΩ 0,01 lux 19,99 lux 20,0 lux 1999 lux 2,00 lux 1999 lux 2,00 lux 1999 lux 2,00 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 20,0 lux 19,99 lux 2,00 lux 19,99 lux 2,00 lux 19,99 lux 2,00 lux 19,99 lux 3,00 lux 19,99 lux 4,00 lux 19,99 lux 5,00 lux 19,99 lux 6,00 V CAT III; 300 V CAT III	1 Ω 0,01 Ω 0,1 Ω 0,1 Ω 0,1 Ωm 1 Ωm 0,01 kΩm 0,1 kΩm 0,1 mA 5 kΩ 0,01 lux 0,1 lux 1 lux 10 lux 0,1 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux 10 lux	±(20 % des Abl.) ±(30 % des Abl.) ±(5 % des Abl.) für Re 1 Ω 1999kΩ ±(10 % des Abl.) für Re 2 kΩ 19.99kΩ ±(20 % des Abl.) für Re > 20 kΩ ±(5 % des Abl. + 3 Digits) Indikative Werte bis zu 128 Schritte ±(5 % des Abl. + 2 Digits) ±(5 % des Abl.) ±(10 % des Abl.)

METREL GmbH

Mess- und Prüftechnik GmbH Orchideenstraße 24, 90542 Eckental T +49 9126 28996-0, F +49 9126 28996-20 info@metrel.de, www.metrel.de

STANDARDAUSFÜHRUNG

MI 3152 ST

- Messgerät EurotestXC

- Commander-Stecker 1,5 Meter
 Prüfleitung, 3 x 1,5 m
 Netzteil + 6 NiMH-Akkus, Typ AA
- Prüfspitzen, 3 Stück (blau, schwarz, grün)
- Krokodilklemmen, 3 Stück (blau, schwarz, grün)
 • RS232-PS/2 Kabel
 • USB Kabel

- Gepolsterte Tragetasche
 Gepolsterter Nackentragegurt
 Metrel ES Manager PRO (P 1101)
- Kurzanleitung
- Bedienungsanleitung auf CDHandbuch auf CD
- Kalibrierzertifikat

MI 3152 (EU)

- MI 3152 ST
 Stromzange A 1018 (niedriger Bereich, Ableitstromstrom)Stromzange A 1019Metrel ES Manager PRO (P 1101)

OPTIONALES ZUBEHÖR

Foto	Bestellnr.	Zubehörs		
	MI 3144	Euro Z 800 V		
	MI 3143	Euro Z 440 V		
VR	A 1018	Stromzange (niedriger Bereich, Leckstrom)		
R	A 1019	Stromzange		
O	A 1110	Dreiphasen- Adapter		
7 0	A 1111	Dreiphasen-Adap- ter mit Schalter		
8	A 1314/1	Prüfstecker		
19	A 1401/1	Commander- Prüfspitze		
§	A 1172	Sensor für Beleuch- tungsmessgerät, Typ B (PS/2)		
<i>§</i>)	A 1173	Sensor für Beleuch- tungsmessgerät, Typ C (PS/2)		
5	AM 1105 A	Barcode-Leser		
N N	A 1160	Schnellladegerät für 8 AA-Akkus mit 6 NiMH-Akkus, Typ AA		
	S 2027	Erdungsprüfset, Dreileiter, 50 m		
	P 1102 AND	PRO Lizenzschlüssel für A 1522 aMESM		

